1 CHALMERS |

v UNIVERSITY OF TECHNOLOGY

High-performance trajectory planning:
A GPU-acceleration performance study

A comparative performance analysis between a single-core,
multi-core and GPU-accelerated trajectory planning algorithm

Master’s thesis in Computer science and engineering

HUGO MARDBRINK
SIMON ENGSTROM

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2025

MASTER’S THESIS 2025

High-performance trajectory planning:
A GPU-acceleration performance study

A comparative performance analysis between a single-core, multi-core
and GPU-accelerated trajectory planning algorithm

Hugo Mardbrink
Simon Engstrom

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2025

High-performance trajectory planning: A GPU-acceleration performance study

A comparative performance analysis between a single-core, multi-core and GPU-
accelerated trajectory planning algorithm

Hugo Mardbrink

Simon Engstrom

© Hugo Mardbrink & Simon Engstrom, 2025.

Supervisor: Miquel Pericas, Department of Computer Science and Engineering
Advisors: Ankit Gupta, Ivo Batkovic, Hannes Eriksson of Zenseact
Examiner: Miquel Pericas, Department of Computer Science and Engineering

Master’s Thesis 2025

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in KTEX
Gothenburg, Sweden 2025

v

High-performance trajectory planning: A GPU-acceleration performance study

A comparative performance analysis between a single-core, multi-core and GPU-
accelerated trajectory planning algorithm

Hugo Mardbrink

Simon Engstrom

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

Automated driving technologies and advanced driver assistance systems (AD/ADAS)
have been a popular research topic since the automotive industry started pursuing
software-defined vehicles. An instrumental part of AD/ADAS is the trajectory
planning algorithm, which decides the trajectory for the given traffic environment.
In recent years, trajectory planning algorithms have improved in both run time and
trajectories.

While the algorithmic improvements have been apparent, there has been a lack of
research on the suitability of parallelization and graphical processing unit (GPU)
acceleration. Targeting the GPU is also highly relevant due to the increase of GPUs
in a vehicle’s computer architecture. This paper implements a spline-based trajectory
planning algorithm in C++ for a single-core central processing unit (CPU), multicore
CPU, and GPU-accelerated platform. Implementations were tested on a relevant
automotive computing platform for accurate comparisons in a realistic scenario.

Ultimately, this thesis concludes that the GPU-accelerated implementation is better
in every aspect measured and, in some cases, achieves a speedup of 2 to 3 orders of
magnitude. Due to the much higher throughput, more solutions could be generated
in a real-time scenario, leading to safer trajectories overall.

Keywords: GPU-acceleration, Parallelisation, Trajectory planning, Trajectory plan-
ning algorithms, Optimisation

Acknowledgements

First and foremost, we would like to thank Miquel Pericas, our Chalmers supervisor,
for his unique perspectives, deep understanding of the HPC field, and persistent
guidance. We would also like to thank our Zenseact supervisors, Ivo Batkovic, Ankit
Gupta, and Hannes Eriksson, for their invaluable domain knowledge and insight in
trajectory planning.

Hugo Mardbrink, Simon Engstrom
Gothenburg, 2025-06-17

vii

Contents

List of Figures

List of Tables

1

2

3

Introduction
1.1 Problem statement
1.2 Research goals

Background
2.1 Trajectory planning algorithm
2.1.1 Frenet frame.
2.1.2 Trajectory generation
2.1.3 Cost function
2.1.4 Object collision and curvature checking
2.2 Parallel architectures & optimisation strategies
2.2.1 GPU architectureo o
2.2.1.1 Grid, block & warp
2212 CUDA
2.2.1.3 Streaming Multiprocessors
2.2.2 CPU multicore architecture
2221 OpenMPo
2.2.3 Memory locality oo
2.2.4 Memory access patterns & Data layout

Implementation

3.1 Verification
3.1.1 Deterministic property-based testing
3.1.2 Manual visualisation

3.2 Sequential implementation L.
3.2.1 Initial state generation
3.2.2 'Trajectory generation L oL
3.2.3 Collision detection and curvature checking

3.3 Parallelisation analysis oL,
3.3.1 Collision detection
3.3.2 Trajectory generation L L

3.4 Multicore implementation o000

ix

Contents

3.4.1 Collision checking L. 18

3.4.2 'Trajectory generation L 20

3.5 GPU-accelerated implementation 21
3.5.1 CUDA-compatibility refactor 22

3.5.2 Collision check GPU implementation 22

3.5.3 Trajectory generation Lo 24

3.6 Keeping computation on device 25
3.6.1 Cost functions Lo 26

4 Experimental Setup 29
4.1 Perfprofiling 29
4.2 C++ Chrono library 30
4.3 PAPL 30
4.4 NVIDIA Nsight 31

5 Results 33
5.1 Execution timeo Lo o 33
5.2 Trajectory quality 38
5.3 Kernel performance 39

6 Future work 43
7 Conclusion 45
Bibliography 47
A Appendix 1 I

List of Figures

2.1 Steps of the algorithm o000
2.2 Cartesian coordinates and the frenet frame comparison
2.3 Pseudo code for trajectory generation
2.4 GPU thread grouping architecture
2.5 CUDA processing flow L.
2.6 Example architecture of a multicore processor
2.7 Example of OpenMP pragma applied to a code block.
2.8 Example of OpenMP pragma applied to a code block.
2.9 Non-exhaustive memory hierarchy
2.10 Structure of Arrays (SoA) and Array of Structures (AoS) data layout
examples in CH++4.

3.1 Example of visualisation tool output. Top graph represent trajectories
and obstacles generated. Middle graphs represents first, second and
third derivative of the longitude. Bottom graphs represent first, second
and third derivate of the latitude.

3.2 Pseudo code for collision detection.

3.3 Time spent in functions of the sequential execution. The view is
filtered only to show the algorithm execution.

3.4 Pseudocode of trajectory generation combinations list creation.

3.5 Benchmark results of the unflattened collision check kernel.

3.6 Benchmark results of the flattened collision check kernel.

3.7 Average portion of execution time of each region after collision check
optimisation. Lo

3.8 Benchmark results of the unflattened collision check kernel.

3.9 Pseudocode of flattened GPU kernel

3.10 Pseudo code of trajectory sampling kernel

3.11 Kernel calls in the GPU implementation of the algorithm.

3.12 Median execution time of GPU implementation regions with bench-
marking parameters listed in 3.1 0L

4.1 Perf stack trace data modelled using a flame graph.
4.2 CH+ chrono library high-resolution clock usage example.
4.3 Example of a PAPI high-level region definition.

29

X1

List of Figures

xii

0.1

5.2
5.3

5.4

2.5

2.6

5.7

2.8

2.9

5.10

Al

Average execution times of all algorithm versions vs the amount of
trajectories generated. oL 34
Graph of the throughput for differing amounts of trajectories generated 35
Graph of average execution time for different amounts of obstacles

and obstacle paths oo 35
Average execution time in microseconds vs obstacle count for the
multicore version of the algorithm. 36
Average execution time in microseconds vs the number of obstacles
for the sequential version of the algorithm. 36
Graph of the standard deviation of average execution time vs trajec-
tories generated. L. Lo 37
Average execution time in microseconds vs obstacle count for the
multicore version of the algorithm. 37

Standard deviation of the execution time in microseconds vs the
number of trajectories generated for the sequential version of the
algorithm. The graph shows three series for three different obstacle

Nvidia Nsight Compute statistics for the trajectory sampling kernel vs
trajectory counts. Benchmarked with eight obstacles and two obstacle
trajectories. L L L 40

Nvidia Nsight Compute statistics for the collision checking kernel vs
trajectory counts. Benchmarked with eight obstacles and two obstacle
trajectories. 41
Trajectory generation pseudocode. II

2.1

3.1
3.2

3.3
3.4
3.5

0.1

0.2

5.3

5.4

2.5

2.6

List of Tables

GPU terminology mapping between Nvidia and AMD

Benchmarking algorithm parameters used.
Benchmark results of the unflattened collision check kernel. Execution
times are measured in microseconds. L.
Benchmark results of the flattened collision check kernel.
Benchmark results of the flattened trajectory generation kernel.
Execution time total and per region for GPU implementation. Bench-
marking parameters shownin 3.1

Execution times in microseconds of the different versions of the algo-
rithm. The speedup column shows the speedup of the GPU-accelerated
version compared to the sequential version.
Execution times in microseconds for the GPU-accelerated version of
the algorithm.o oo
Normalised cost for the GPU-accelerated version of the algorithm for
different trajectory counts. Eight Obstacles and two trajectories per
obstacle were used in these benchmarks.
Normalised cost of the different algorithm versions for different trajec-
tory counts. Eight obstacles and two trajectories per obstacle were
used in these benchmarks. 000
Nvidia Nsight Compute statistics for each kernel in the GPU-
accelerated version of the algorithm. The binary benchmark generates
1104 trajectories with eight obstacles and two obstacle trajectories.
Nvidia Nsight Compute statistics for each kernel in the GPU-
accelerated version of the algorithm. The binary benchmark generates
36 trajectories with eight obstacles and two obstacle trajectories. . . .

39

40

xiii

List of Tables

Xiv

1

Introduction

Autonomous Driving and Advanced Driving Assistance Systems (AD/ADAS) are
systems used in vehicles to assist the driver, improve traffic safety, and mitigate the
risk of human error in traffic scenarios. Some examples of these systems include
anti-lock breaks, electronic stability control (ESC), and adaptive cruise control. Over
the years, these systems have become more sophisticated with the digitalisation of
vehicles and increased computation power. A subset of these systems must process
large amounts of data to make decisions or help the driver make decisions while
driving. For example, by monitoring the driver’s steering patterns, the system can
identify when the driver is tired and should take a break to rest. Furthermore, using
sophisticated collision detection systems, the vehicle can emergency break if the
system deems collision inevitable.

1.1 Problem statement

A central component in AD/ADAS systems is the trajectory planning algorithm
that calculates optimal trajectories with the help of cost functions. For a vehicle to
be able to adapt to an ever-changing traffic environment, both external factors and
driver decisions need to be accounted for in the algorithm. One algorithmic apprach
is finding the optimal trajectory from an initial state to a pre-defined final state [1].
In this case, optimal means that it has a minimal cost defined by cost functions that
evaluate trajectories based on several metrics. These approaches usually work well
in calm traffic environments. Still, in situations where obstacles can sporadically
appear, and the driver can randomly change their intentions, the algorithm needs to
be able to consider alternative trajectories to different end states in real time. The
algorithm presented by Werling et al. [1] uses an iterative approach where multiple
trajectories are generated for different driving strategies. Driving strategies refer to
driving actions such as stopping and velocity keeping. This approach enables the
algorithm to react better to changing environments and driver input.

With time, more driving strategies might be added to account for more traffic
scenarios. More driving strategies infer an increased computational load that may
become unfeasible for a sequential approach. Therefore, parallelism must be con-
sidered to reduce the algorithm’s execution time. Furthermore, due to the simple
nature of the calculations performed in the algorithm, the potential benefits of
GPU-acceleration should be evaluated to determine the optimal parallelism approach

1. Introduction

for GPU-accelerating the algorithm.

In recent years, extensive research has been done on developing algorithms for faster
execution and more refined trajectories in real-time scenarios [2], [3]. To tackle the
computational challenge of finding trajectories and evaluating them in real-time,
McNaughton et al. [3] implemented their algorithm on a GPU, allowing them to yield
faster results. The results of this implementation were promising, highlighting the po-
tential of using GPUs to parallelise this type of workload. However, a comprehensive
performance analysis is not present, raising questions about resource utilisation and
the feasibility of executing the algorithm on vehicular GPUs. Furthermore, Werling
et al. [1] claims that their algorithm is entirely parallelisable and that multicore
execution would further reduce the execution time. This claim did not, however,
have an attempted parallel implementation or performance review.

1.2 Research goals

This thesis’s research mainly investigates how GPU-accelerating a trajectory planning
algorithm affects different performance metrics. More specifically, the implementation
to be evaluated is the trajectory planning algorithm proposed by Werling et al. [1].
The primary justification for this goal is to present the lack of performance analysis
and performance and quality trade-offs within the trajectory planning algorithm
domain.

One goal is to determine the speedup of accelerating the algorithm on a GPU relative
to a CPU. The problem is answered in execution time and trajectory throughput for
both GPU and CPU. Comparing the different metrics will give a relative speedup
between the processing units and provide a conclusive answer as to which is faster
and by how much. Furthermore, the trajectory planning algorithm itself leaves room
for parameter adjustments, such as the number of traffic objects. These parameters
are not static, and measuring different parameter configurations would conclude
performance trade-offs when varying them.

Another goal is how the quality of trajectories is affected by offloading the computa-
tions to a GPU. It is necessary to conclude if the quality of the trajectories suffers or
improves.

This thesis also aims to give a performance analysis of the GPU-acceleration of the
algorithm, highlighting bottlenecks and opportunities for further optimization. This
provides useful pointers for further research regarding GPU-acceleration of trajectory
planning algorithms.

« RQ1 How does parallelisation affect the execution time of the algorithm?
« RQ2 Could parallelism increase the quality of the trajectory generation?

« RQ3 How efficiently does the GPU-accelerated program kernels utilise the
hardware in terms of compute and memory resources?

2

Background

The background gives details about the algorithm to understand optimisation efforts
and implementation details. This chapter also provides theory about computer
architecture and optimisation strategies, especially about GPUs.

2.1 Trajectory planning algorithm

Trajectory planning algorithms aim to find a path from one point or state to another,
satisfying a set of conditions or minimising a cost calculated from a set of path
characteristics. The algorithm this paper is based on by Werling et al. [1] is based
on an optimal control problem.

. . Cost and
" Frenet Calculate Generate Trajectory Cartesian . .
Initial state | | NN S . - . collision
conversion [target states[’|trajectories sampling conversion check

Figure 2.1: Steps of the algorithm

Figure 2.1 shows a simplified flow chart of the algorithm presented by Werling et al.
[1]. In this case, the initial state refers to the initial state of the road. This traffic
scenario gets converted into the frenet frame, and several target states are calculated.
Trajectories are generated and sampled from these targets before being converted
into cartesian coordinates. Lastly, collision checks and cost functions are run, and
the winning trajectory is chosen.

2. Background

2.1.1 Frenet frame

Cartesian coordinate system

A

,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,

<A

Frenet frame

,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,

I
< - 4 : d

Figure 2.2: Cartesian coordinates and the frenet frame comparison

The frenet frame is a moving coordinate system defined by a curve’s tangent, normal,
and binormal vectors, which describe the curve’s local orientation and curvature
at each point [4]. In this case, the curve is the reference path following the road.
A visualisation of a reference path converted to the frenet frame compared to a
cartesian coordinate system can be seen in Figure 2.2. While a cartesian system
is represented as z and y, the frenet frame is defined as s and d, where s is the
longitudinal position and d is the latitudinal position [4].

2.1.2 Trajectory generation

The algorithm’s trajectory generation part generates possible trajectories for specific
targets. These targets vary primarily based on vehicle mode, giving them different
properties like target time and velocity. The four driving strategies defined in the
implementation are velocity keeping, stopping, lane change, and lane keeping. For
each mode, trajectories are generated with lateral and longitudinal offsets [1].

NTTajectom'es = NModes * NLatOffsets * NLonOffsets * NTargetTimes (2 1)

2. Background

for (mode : vehicle_modes) {
for(d_min..d_max) {

// Combine polynomials
for(@..target_time) {
// Generation for each point

3

cost = totalCost(trajectory)

if(cost < min_cost) {
min_cost = cost
selectBestTraj(trajectory)

Figure 2.3: Pseudo code for trajectory generation

There is also computation for each point in each trajectory, which can be seen in the
pseudocode described in Figure 2.3.

2.1.3 Cost function

To determine the best trajectory, a cost function is applied to each generated
trajectory. The cost function is defined as achieving human-like driving trajectories.
In this case, £ represents the vector of a target state, either longitudinal or lateral.
Different weights k represent different penalisations in the cost function, namely
slow convergence, final deviations from reference path and prioritising longitudinal
or lateral movement. Final deviation and movement are defined by positional offset
and convergence in jerk, which is the derivative of acceleration.

J[d, 8] = Jold] + ko Js[s], ks >0 (2.2)

Je = folu)dt + (h(E(1), 1)), 2.3

= Ly t 2.4

folu) = 5u(1) (2.4

ME), 1) = kot + Shales(t) — el (P, ke > 0 (25

2.1.4 Object collision and curvature checking

Apart from the cost functions described in Equation 2.2, each trajectory has to be
checked for collisions with obstacles and maximum turning curvature. Naturally, a

2. Background

trajectory should be discouraged if it risks colliding with an obstacle, which can be
done by increasing its cost by a considerable amount. Furthermore, for the vehicle
to execute a trajectory, it has to be within the maximum curvature range to work.

2.2 Parallel architectures & optimisation strate-
gies

A fundamental understanding of multicore architectures for CPU and GPU is required
to understand why certain optimisation strategies work. A parallel programming
API for CPU and GPU is presented to understand implementation details.

2.2.1 GPU architecture

This section explains how a GPU’s architecture is designed, especially regarding
parallel computing. Since the architectural terminology differs between vendors,
equivalent technologies can be seen in Table 2.1. The target GPU of the thesis is
manufactured by Nvidia, and thus, the paper will use Nvidia terminology.

NVIDIA | AMD Description

Thread Work-item | Unit of execution

Warp Wavefront | Group of threads executed with SIMD
Block Workgroup | Collection of warps/wavefronts

Grid NDRange | Collection of blocks/workgroups

SM CU Processing units

Table 2.1: GPU terminology mapping between Nvidia and AMD

2.2.1.1 Grid, block & warp

Grid
Block Block Block
Warp Warp Warp Warp Warp Warp

R A
Figure 2.4: GPU thread grouping architecture

In CUDA terminology, warp is the name for a small subset of threads that execute
the same instruction in parallel. This action of executing a single instruction on
multiple data is a computation model often abbreviated to SIMD. In the context
of GPUs, SIMD is usually called SIMT instead since the instruction is running on
multiple threads. GPUs are a suitable hardware target for the SIMD computational

6

2. Background

model due to the low scheduling overhead compared to a CPU [5]. A warp size of 32
threads is used for all current Nvidia GPU architectures. An instruction is loaded to
all threads within a warp, which is then executed on all threads simultaneously, and
only after all threads have finished their execution the next instruction is loaded [5].

A group of warps is called a block. Blocks are used to schedule the execution of
warps onto different execution units on the GPU. They also provide isolation from
blocks of other warps, meaning that they can execute in any order. Threads within
a block are allowed to have independent synchronisation within itself. A block also
provides a local shared memory that can be used by all threads within [5]. A grid
is the highest thread organisation level containing blocks. A grid represents the
total parallel computation for a GPU kernel and determines the number of blocks
to execute. A grid can be defined as a 1D, 2D or 3D grid of blocks [5]. Figure 2.4
illustrates the hierarchical relation between the concepts.

2.2.1.2 CUDA

Process instructions
CPU

GPU

GPU result to main memory

Main GPU

Memory Memory

Processing data to GPU

Figure 2.5: CUDA processing flow

CUDA is used to access the GPU’s virtual instruction set in all instances of GPU-
acceleration. The software layer is a proprietary API developed by NVIDIA for a
specific selection of their GPUs. CUDA focuses on exposing elements for parallel
computation to ease compute kernel acceleration. CUDA is designed for different
languages, whereas the C/C++ compiler is nvce. The processing flow of CUDA
can be seen in Figure 2.5. The CPU supplies the GPU with kernel instructions and
memory portions to copy. GPU kernels are executed in parallel and copy the result
to the main memory [5].

CUDA functions are compiled into Parallel Thread Execution (PTX) assembler
code for the GPU. The CUDA kernel initiates grid generation, which schedules and
synchronises the parallel thread execution within its blocks and warps. The CPU
allocates memory in the GPU and copies the processing memory into the GPU
memory. Processing instructions in the form of PTX assembler instructions are also
sent to the GPU. When execution is complete, the result is copied back into the
main memory, and the CPU can free up its previous allocation of GPU memory.

2. Background

2.2.1.3 Streaming Multiprocessors

NVIDIA GPUs consist of execution units called Streaming Multiprocessors (SMs),
which, in turn, consist of several execution units called streaming processors (SPs)
that can execute one instruction at a time for a specific thread [6]. To schedule a
thread block for execution, it must be mapped onto an SM. Each SM can have several
blocks mapped to it. However, it can only execute one warp in a block at a time. If
an executing warp encounters a long latency operation, the SM can context switch to
a different warp in the block to hide the latency of that operation. Therefore, to gain
high SM utilisation, it is preferable to organise the threads into blocks of adequate
sizes so that the SM can perform latency hiding for long latency operations.

2.2.2 CPU multicore architecture

Processor

Tiid

Cache Cache Cache Cache

A A A A

v v v v

Figure 2.6: Example architecture of a multicore processor

Each core in Figure 2.6 is responsible for executing program instructions. The cores
are connected to cache memories, which hold data used in computations. The layout
in Figure 2.6 is an example of core-cache relation; specific models may differ.

2.2.2.1 OpenMP

OpenMP is an API that provides directives for multiple data constructs on a multicore
CPU [5]. It provides a way to define private data, shared data, and several threads

8

2. Background

to run in a parallel region. The library targets several languages, most importantly
C++, for the analysed multicore implementation. CPU threads are created and then
destroyed in a fork-join model, meaning all threads must finish before the parallel
region is deemed executed, and the next part can continue.

The OpenMP API offers a multitude of preprocessor directives or pragmas that the
programmer can use to parallelise code regions. These pragmas are applied to code
blocks as shown in the example in Figure 2.7. Depending on the directive, one or
more clauses can be added to modify its behaviour. For example, to parallelise the
iterations of a for loop such that a pool of worker threads each collaborate to finish
the for loop, the directive parallel for can be added to the for loop as shown in
Figure 2.8. In this example, the clauses num_threads and schedule are also applied,
changing the number of threads in the worker pool and the scheduling algorithm
determining how iterations are distributed among worker threads. At the end of the
parallel region, an implicit barrier ensures that each thread has finished executing
the parallel region before continuing program execution beyond the region [5].

#pragma omp directive [clauses]
{ block }

Figure 2.7: Example of OpenMP pragma applied to a code block.

#pragma omp parallel for num_threads(4) schedule(dynamic)
for (int i = 0; i < num_iters; i++) {

}
Figure 2.8: Example of OpenMP pragma applied to a code block.

OpenMP also provides synchronisation directives that can be used within a parallel
region to ensure correctness. For example, the atomic directive can be applied to a
code line to ensure the instruction is atomically performed. Furthermore, critical
can be used to define a critical region within a parallel region, and barrier can
explicitly specify a barrier in a parallel region [5].

2.2.3 Memory locality

The memory hierarchy of computer systems allows for performance optimisations
in kernels with a strong locality of reference. A non-exhaustive representation of
memory levels relevant to this thesis can be seen in Figure 2.9. When a specific
memory location is accessed, the memory is loaded into a cache block in the CPU
memory. Every access that is another memory address will start demoting the cached
memories level in the hierarchy. First, it will demote into lower cache levels and,
lastly, into the main memory.

This hierarchy also represents read/write speed when communicating with the CPU.
The highest cache level will have the shortest access time while main memory will

2. Background

. CPU-
| Memory
| (SRAM)

L2-
Cache

L3/Last level-
Cache
. . Main
Main i Memory
Memory | (dRAM)

Figure 2.9: Non-exhaustive memory hierarchy

have the longest [5]. This thesis primarily focuses on two types of locality: temporal
and spatial locality. Temporal locality is when a specific cache block is accessed
several times before being replaced. Thus, high temporal locality will keep the
memory in a lower cache level and minimise read/write time to the memory location
[5]. Spatial locality describes how programs often access memory locations with
neighbouring addresses. Therefore, in a program that utilises spatial locality, memory
access will be followed by successive access in the same cache. Thus, the program
can utilise a lower-level cache’s short read/write times for multiple memory locations

[5].

2.2.4 Memory access patterns & Data layout

Since levels of memory locality lead to shorter execution times through reduced read
and write times, the memory access pattern is essential. For example, accessing
memory through nested pointers to different locations in memory results in bad
memory locality, as cache lines are less likely to be reused. However, if the data is
structured and accessed in a way that provides good memory locality, performance
can significantly increase [5].

Two data modelling alternatives that are commonly discussed are Structure of Arrays
(SoA) and Array of Structures (AoS). Examples of these data layouts are showcased
in Figure 2.10. Both layouts in this figure represent the same thing: a collection
of values of types A, B and C. However, their structure can significantly affect the
application’s performance, depending on the access pattern [7]. Furthermore, it can
be said that the SoA layout is preferred when writing parallelisable code, as it is
easier for C++ compilers to vectorise [§].

Depending on the kernel, data layout and memory access pattern are essential when
writing high-performance GPU applications. Also, with CPUs, GPUs have a memory
hierarchy, where the L1 cache for each SM is the fastest, then a shared L2 cache, and
the global memory, which is the slowest [9]. When a warp thread accesses global
memory, depending on the access pattern, the accesses can be coalesced into a single

10

2. Background

// Structure of Arrays
struct N_ABCs {

TypeA as[N];

TypeB bs[N];

TypeC cs[N];
1

// Array of Structures
struct ABC {
TypeA a;
TypeB b;
TypeC c;
1
ABC abcs[N];

Figure 2.10: Structure of Arrays (SoA) and Array of Structures (AoS) data layout
examples in C++.

memory access instead of one for each thread in the warp. The coalescing is only
possible if the threads within the warp access contiguous memory locations [9], which
the SoA data allows. This way, the memory throughput is maximised, and the
application execution time is decreased because of less memory latency.

11

2. Background

12

3

Implementation

This chapter provides a detailed description of the steps taken to implement the three
versions of the algorithm investigated by the thesis. Firstly, the sequential implemen-
tation of the algorithm will be described and used as a base for implementing the
multicore and GPU-accelerated versions of the algorithm. Subsequently, implemen-
tations of the multicore and GPU-accelerated versions are described. Intermediary
results are also presented throughout the chapter to motivate implementation deci-
sions before reaching a final implementation. Verification tool implementations are
also given to ensure algorithmic correctness between implementations.

3.1 Verification

During verification, a way must be found to consistently generate plausible scenarios
and verify that the picked trajectory is correct. Instead of coupling the application
to closed source libraries, a custom testing framework was developed.

3.1.1 Deterministic property-based testing

The framework is loosely coupled to the algorithm and is designed around property-
based testing. The input generation uses a pseudo-random number generator to
create realistic traffic scenarios and roads. The result of the random number generator
is deterministic based on a seed, enabling debugging and verification for specific
scenarios while still enabling testing an endless amount of scenarios. The vehicle
state is generated based on bounded random number generation, however, the road
is generated by creating a cubic spline between pseudo random points.

3.1.2 Manual visualisation

To verify the correctness of the implementation, Python programs parse the output
data of the algorithm and display a visualisation of the trajectories. The program
also displays the longitudinal and lateral components and their first, second and third
derivative of each trajectory in the frenet frame. Manual visualisation is an essential
step in ensuring correctness during optimisations. The coupling is implemented by
generating output JSON data, which is enabled via preprocessor directives, removing
JSON processing when benchmarking. The Python programs parsed the output
to JSON, which displays the data as a collection of interactive graphs, as seen in

13

3. Implementation

Figure 3.1. Trajectories are color-mapped, where red defines low costs, and blue has
high costs. Red circles shown only in the top graph are obstacles associated with
their possible trajectories. The green line is the reference path, and the line with
increased width is the trajectory with the lowest cost. The costs of the trajectories
were also printed by the program for debugging reasons. Introduced bugs could then
be identified if there was any difference in the trajectory costs between versions.

Cartesian Trajectories

10.0 10.0

30 75+ 75

5.0 5.0
20 2.5 2.5
0.0 0.0

10 -2.5 1 -2.5
-5.0 4 -5.0

-10.0 T T T T T i T -10.0

10.0 10.0 15
75 7.5
5.0 5.0

25 2.5+ °
o ———— | il
-2.5 -2.5 1 s

-5.0 -5.0 4

-75 -75 4

-10.0 -10.0 -15

Figure 3.1: Example of visualisation tool output. Top graph represent trajectories
and obstacles generated. Middle graphs represents first, second and third derivative
of the longitude. Bottom graphs represent first, second and third derivate of the
latitude.

3.2 Sequential implementation

The sequential implementation of the algorithm was developed in C++, with the
help of visualisation tools for the algorithm output data written in Python. The
Python tools assisted the implementation by visualising the results and confirming
correctness. Data types in the implementations use single precision floats.

3.2.1 Initial state generation

Executing the trajectory planning algorithm requires data about the current state.
The state includes information about the car, detected obstacles and reference path.
The car’s current state includes its heading, position, velocity and acceleration. Each
detected obstacle has a position, radius, and three paths it might traverse, which
are referred to as obstacle trajectories. Lastly, the reference path is defined as the
centre of the lane or road being traversed. This data is generated using a mock
state generator that produces a pseudo-random state depending on its seed. The
attributes of the generated state are bounded so that completely unrealistic scenarios

14

3. Implementation

do not occur. For example, the initial velocity of the car is randomised within a
certain bound that represents realistic driving speeds.

3.2.2 Trajectory generation

When a mock state has been generated, it is fed to the initial algorithm function
responsible for developing and evaluating trajectories. Initially, the lateral and
longitudinal driving strategies are iterated. The lateral strategies are lane keeping
and lane changing, and the longitudinal strategies are velocity keeping and stopping.
Next, the driving strategy and mock state are fed to a function computing a list of
target times. The current strategy and target times are then used to calculate the
lateral and longitudinal target states representing the car’s lateral and longitudinal
position, velocity and acceleration at the specified target time.

Thereafter, the algorithm iterates over longitudinal and lateral offset ranges to
generate more trajectories that deviate from the target state. Then, a quintic
polynomial representing the lateral trajectory movement is generated, along with
a quintic or quartic polynomial for the longitudinal component, depending on the
driving mode. These polynomials’ values, along with their first to third derivative,
are then sampled with a configurable resolution to generate a vector of trajectory
points in the frenet frame. The polynomials are only sampled up to the current
target time being iterated over.

As the points are being sampled, they are also iteratively converted into the cartesian
coordinate system. The conversion is done by finding the point on the reference
path representing the same traversed longitudinal distance as the longitudinal frenet
trajectory sample. To find this point, the algorithm integrates the distance from
the current reference point until it is greater or equal to the longitudinal sample
value. The point is then used to convert the frenet sample into cartesian space. The
frenet sample point and its cartesian representation are saved in vectors that are
then used to calculate the cost of the trajectory according to the functions described
in Equations 2.2 to 2.5. Pseudocode for the trajectory generation function can be
seen in A.1.

3.2.3 Collision detection and curvature checking

The cost of each trajectory is not only affected by the formulas in 2.2, it is also
affected by a collision checking routine that penalises trajectories on collision paths
with obstacles. Each obstacle in the algorithm has a radius, position, and several
possible trajectories that it might traverse along with some probability. To determine
if a trajectory is on a collision path with an obstacle’s trajectory, each pair of points
in both trajectories has to be farther apart than the radius of the obstacle.

The pseudocode displayed in Figure 3.2 shows how the points of each obstacle
trajectory are checked against each point in a generated trajectory to determine if
there is a collision. This process is repeated for each of the generated trajectories,
and the cost of trajectories with possible collisions is modified. The added cost for a
collision-trajectory is calculated as in Equation 3.1, where K .ojision is some constant

15

3. Implementation

for (traj in trajectories) {
for (obs in obstacles) {
for (obs_traj in obs.trajectories) {
for (p1 in obs_traj) {
for (p2 in traj) {
if (distance(pl, p2) < obstacle_radius) {
traj.cost += coll_cost;
goto next_obs_traj;

3
b

next_obs_traj:;

}
Figure 3.2: Pseudo code for collision detection.

representing the unweighted cost of a collision. This value is then added to the
computed cost value from Equation 2.2.

COStcollision - collision * Pobsitraj (31)

The algorithm presented in [1] does not describe this collision detection strategy.
However, this strategy was chosen to better account for the unpredictability of
dynamic obstacles in a real-world scenario.

Furthermore, since trajectories have different target times and, therefore also, various
lengths, it is essential to compare their costs fairly. In Werling et al. [1], the strategy
implemented is to truncate longer trajectories and extrapolate shorter trajectories to
evaluate the costs of the trajectories at the same time. However, the approach used
in this implementation is to divide the total cost by the number of points evaluated
on the trajectory, which is proportional to its target time. This strategy avoids
extrapolating the trajectory polynomials beyond their defined range.

3.3 Parallelisation analysis

Before implementing a multicore and GPU-accelerated version of the algorithm, a
thorough parallelisation analysis was conducted to identify bottlenecks and paralleli-
sation opportunities in the sequential implementation. This section comprehensively
describes these opportunities and how they were identified using performance analysis
tools.

16

3. Implementation

3.3.1 Collision detection

The first step of the parallelisation analysis was generating a flame graph of the
sequential execution. A filtered view of this flame graph showcasing the algorithm
execution is displayed in Figure 3.3. This graph shows that most of the execution
time is spent checking the trajectories for collisions, which indicates that effort should
be put into optimising this step.

ESTEE _sqrtf finite@G.. SEMDSESETN |)
collisionCheck /gene.
fpasrun

Figure 3.3: Time spent in functions of the sequential execution. The view is filtered
only to show the algorithm execution.

When analysing the collision checking kernel, it is apparent that the outer for-loop is
entirely parallelisable since there are no inter-loop dependencies. Also, parallelising
any other loop would require synchronisation or atomicity when adding the trajectory
cost. Furthermore, flattening the three outer loops could result in better load
balancing since trajectories differ in the number of points sampled, proportional to
their target time. Parallelisation of this kernel could lead to significant improvements
such that the trajectory generation accounts for a substantial portion of the total
execution time.

3.3.2 'Trajectory generation

Parallelisation of this kernel proved more challenging than the collision-checking
kernel. As seen in the pseudocode in Figure A.1, the outer loop is entirely paral-
lelisable as there are no inter-loop dependencies. However, as there are only two
driving strategies in each outer for loop, parallelisation of each iteration would
result in only two threads running in parallel, insufficiently utilising the available
hardware. Under-utilisation is the case for all loops except the innermost loop. The
innermost loop has loop-carried dependencies through the sum variable that is used
to significantly reduce the execution time of converting the frenet trajectory point to
cartesian coordinates. Therefore, it is not parallelisable.

An alternative parallelisation strategy would be to coalesce all but the inner for
loop so that each thread generates a trajectory and evaluates it. The approach
would result in more fine-grained parallelism. Each thread would be assigned a
longitudinal and lateral strategy, a target time, and lateral and longitudinal offsets
in this strategy. This combination of parameters can be precomputed such that a list
of all parameter combinations can be iterated in a parallel manner, as each iteration
would be independent. For an example showcasing how this combination list can be
created, see Figure 3.4.

When trajectory generation and sampling have finished, the trajectory is saved in
a dynamic vector as shown in Figure A.1. It’s important to note that this has to

17

3. Implementation

Combinations all_combs;

for (auto lat : lateral_strategies) {
for (auto lon : longitudinal_strategies) {
const auto frenet = cartesianToFrenet(ego_data, ref_data);
auto target_times = getTargetTimes(frenet, lon_strat);

for (auto target_time : target_times) {
for (auto d : d_steps) {
for (auto s : s_steps) {
all_combs.append({lat, lon, target_time, d, s});

b

Figure 3.4: Pseudocode of trajectory generation combinations list creation.

be done thread-safe using some synchronisation mechanism if the underlying data
structure is not inherently thread-safe. Thread safety is not considered in standard
library C++ vectors and, therefore, warrants using a synchronisation mechanism
like a semaphore to avoid race conditions. However, if trajectories are stored in an
array where each trajectory has a pre-assigned index, this would not be a problem.
The main drawback of this approach is the overhead incurred by generating the list
of combinations.

3.4 Multicore implementation

In the multicore implementation, the collision checking kernel and the trajectory
generation kernel were parallelised using OpenMP. The statistics presented in this
section were gathered by benchmarking the algorithm with 50 different seeds. Fur-
thermore, the same discretisation parameters were used in each execution, which are
listed in Table 3.1. The number of obstacles and the obstacle trajectory parameters
are also listed as factors that significantly affect the performance of collision checking.

3.4.1 Collision checking

Initially, the collision checking kernel was parallelised using the OpenMP pragma
#pragma omp parallel for scheduling(x) num_threads(y) where x is the schedul-
ing strategy, and y is the thread count. This pragma was placed on the outer for loop,
iterating over trajectories. Thread counts 4, 8 and 16 were considered, along with
static, dynamic and guided scheduling strategies. Results of these benchmarks are
shown in Table 3.2 and visualised in Figure 3.6. Dynamic scheduling with different
block sizes was also considered but did not yield any performance increase and was
excluded from the table and graph.

18

3. Implementation

Table 3.1: Benchmarking algorithm parameters used.

Parameter name Count | Note

Lateral strategies 2 Lane keeping, Lane change
Longitudinal strategies | 2 Velocity keeping, Stopping
Target times 3 Depends on strategy
Lateral offsets) -2m to 2m, 1m steps
Longitudinal offsets 3 -0.1m to 0.1m, 0.1m steps
Total trajectory count | 180

Obstacles 10 Amount of obstacles
Obstacle trajectories 3 Trajectories per obstacle
Obs. trajectory length | 200 Points per obs. trajectory

Table 3.2: Benchmark results of the unflattened collision check kernel. Execution
times are measured in microseconds.

Thread count | static (ps) | dynamic (ns) | guided (ps)
4 151297.95 | 100782.92 97400.25
8 80047.17 | 53326.32 50219.68
16 69597.14 | 54168.8 54035.19

Unflattened collision check kernel
B static W dynamic guided
200000

150000

100000 <+

50000 +

Execution time (microseconds)

8 16

Thread count

Figure 3.5: Benchmark results of the unflattened collision check kernel.

19

3. Implementation

Table 3.2 shows that guided scheduling with eight threads is optimal. The impact of
coalescing the kernel was also benchmarked, and these results are shown in Table 3.3
and Figure 3.5.

Table 3.3: Benchmark results of the flattened collision check kernel.

Thread count | static (ps) | dynamic (ps) | guided (ps)
4 151549.63 | 105631.4 97074.09
8 75567.38 | 57075.6 49994.42
16 75402.51 | 53146.58 49858.04

Flattened collision check kernel

B static @ dynamic guided
200000
1650000

100000 4

50000 —

Execution time (microsecands)

] 16

Thread count

Figure 3.6: Benchmark results of the flattened collision check kernel.

As can be seen in Tables 3.3 and 3.2, there was no significant performance increase
of the flattened kernel. However, the flattened kernel is marginally faster with 16
threads and guided scheduling and was kept. Also note that the dynamic scheduling
strategies are significantly better than static scheduling. This is because of load
imbalance implied by some trajectories having more points to check than others.
There is also an early return statement in the collision checking code that proceeds to
the next obstacle trajectory if a collision is found as can be seen in Listing 3.2. This
way, trajectories that collide early will finish collision checking faster. By dynamically
being able to reassign iterations to different threads, the scheduler can account for
this load imbalance.

3.4.2 'Trajectory generation

After optimising the collision checking kernel, it became apparent that trajectory
generation consumed a significant portion of the total execution time, as seen in
Figure 3.7. This data was collected using PAPI as flame graphs become unintuitive
visualisations in multicore environments since the stack traces include significant
thread management noise. As stated in Section 3.3.2, to parallelise the trajectory

20

3. Implementation

generation kernel efficiently, one should flatten the outer loops and parallelise the
iteration over parameter configurations much like the flattened collision checking
kernel. The flattening was implemented using a pre-allocated array where each
trajectory has an index to avoid synchronisation mechanisms.

Average execution time portion per region

Other
0.1%

Collision check
38.0%

Trajectory generation
62.0%

Figure 3.7: Average portion of execution time of each region after collision check
optimisation.

As with the collision checking kernel, the flattened trajectory generation kernel was
parallelised using an OpenMP pragma on the outer loop. The thread counts 4, 8
and 16 were considered, as well as static, dynamic and guided scheduling strategies.
The results are shown in Table 3.4 and Figure 3.8.

Table 3.4: Benchmark results of the flattened trajectory generation kernel.

Thread count | static (ps) | dynamic (ns) | guided (ps)
4 30781.89 | 22964.16 21564.23

8 20085.06 | 11663.17 11698.41
16 10417.27 | 6772.51 6692.32

An unflattened version of the trajectory generation kernel was also parallelised using
an OpenMP pragma on the outer loop. However, this did not yield good results,
as the iterations had to be more numerous to efficiently use the available cores.
Consequently, these performance results are not shown in this section.

3.5 GPU-accelerated implementation

To GPU-accelerate the algorithm, a series of steps had to be taken. First, a number
of refactors had to be done to achieve CUDA compatibility. Then, each kernel was
rewritten into GPU-kernels one by one, iteratively exploring performance metrics
to find the best approach. Finally, efforts were made to keep as much computation

21

3. Implementation

Execution time of flattened trajectory generation kernel
B static @ dynamic guided

40000 —

30000 +

20000 +

10000 —+—

Execution time (microseconds)

8 16

Thread count

Figure 3.8: Benchmark results of the unflattened collision check kernel.

on the device as possible to avoid unnecessary memory transfers between CPU and

GPU.

3.5.1 CUDA-compatibility refactor

To transfer memory and execute kernels in a CUDA context, some data structures had
to be significantly refactored to avoid non-compatible structures like C++ vectors,
replacing them with statically sized arrays of structures instead. Dynamically sized
CUDA-compatible data structures are available through the thrust library included
with the CUDA toolkit. This option made the refactoring process less labour-
intensive and avoided potential memory leakage problems. However, due to the
memory management overhead required when using dynamic memory structures, it
was decided that statically sized arrays would be used instead. This refactor was
back-ported to previous implementations to keep the comparison fair.

3.5.2 Collision check GPU implementation

When designing the kernel, a granularity would have to be decided. The multicore
implementation had a relatively large granularity as it operated per trajectory. For
the case where 180 trajectories are generated, it would not make efficient use of all
available GPU threads. The collision check loop-nesting was flattened to achieve a
more suitable granularity for the GPU kernel, as seen in Listing 3.9. After being
flattened, each thread executes one position of one obstacle trajectory against the
entire path of one trajectory. The flattening resulted in a much more fine-grained
granularity, which is a better fit for the GPU. The second strategy was to change from
AoS to SoA for the trajectories and obstacles of data structures. The data structures
were also completely flattened, as seen in Listing 3.9. Furthermore, the flattening not
only significantly improved the time to copy data to the device but also lowered the
execution time of the kernel by a factor of roughly 20. Flattening also made most of

22

3. Implementation

const int th_idx = blockIdx.x * blockDim.x + threadIdx.x;
if(th_idx >= THREAD_COUNT) return;

const int obs_traj_pos_idx = th_idx % OBS_PATH_LEN;
int temp = th_idx / OBS_PATH_LEN;

const int obs_traj_idx = temp % OBS_TRAJ_COUNT;
temp /= OBS_TRAJ_COUNT;

const int obs_idx = temp % OBS_COUNT;
const int traj_idx = temp / OBS_COUNT;

const int start_idx = traj_start_indices[traj_idx];
const int end_idx = traj_start_indices[traj_idx+1];

const float radius = obs_radiil[obs_idx];
const float radius_sqrd = radius * radius;

const int flat_pos_idx = obs_idx * (OBS_TRAJ_COUNT * OBS_PATH_LEN)
+ obs_traj_idx * OBS_PATH_LEN + obs_traj_pos_idx;
const float obs_traj_x = obs_x_arr[flat_pos_idx];
const float obs_traj_y = obs_y_arr[flat_pos_idx];

for(int idx = start_idx; idx < end_idx; idx++) {
const auto dx {obs_traj_x - traj_x_arr[idx]};
const auto dy {obs_traj_y - traj_y_arr[idx]};
const auto dist {dxxdx + dy*dy};

if(dist < radius_sqrd) {
const int probs_idx = obs_idx * OBS_TRAJ_COUNT + obs_traj_idx;

atomicAdd(&costs[traj_idx], KCOLL * obs_probs[probs_idx]);
break;

Figure 3.9: Pseudocode of flattened GPU kernel

23

3. Implementation

the GPU activity memory transfers instead of computation, which made streaming
the data to the GPU viable. This optimisation was also backported to previous
versions. Streaming further reduced the execution time, allowing computation to be
overlapped with data transfers.

Attempts were made to further increase the granularity of the kernel by flattening
the inner for-loop seen in Figure 3.9. However, this resulted in a granularity far
too high to be feasible, as it resulted in a tenfold increase in the execution time of
the kernel. Furthermore, the memory access pattern to the global memory of this
kernel is not optimal, as the memory accesses are not coalesced. The only repeated
necessary global memory access is to the d_y and d_x arrays. These accesses need
to be coalesced or cached in shared memory to reduce the latency inferred by these
accesses. However, shared memory is only feasible if one thread block handles collision
checking for an entire trajectory, which is not a desired approach as the granularity
becomes too coarse. Furthermore, the memory accesses cannot be coalesced as one
thread accesses all of the memory locations in the trajectory.

3.5.3 Trajectory generation

The first approach was to run a task per trajectory generated. This granularity was
too coarse to run efficiently on a GPU and yielded no significant speedup compared
to the sequential version. The second approach separated the logic of sampling the
trajectory and the creation of the quintic and quartic polynomials. The polynomial
creation isolated the complex parts of the generation and was kept on the CPU while
the trajectory sampling could be moved to the GPU. Depending on the length of the
trajectories and path resolution, the granularity changes, but a typical run spawns
about 50000 tasks, one for each position to sample. The reduced granularity resulted
in a significant speedup, about a tenfold improvement in runtime from the sequential
implementation.

The vast majority of the execution time in the trajectory sampling kernel now went
towards finding the time travelled at a certain arc length of the reference path needed
to convert the sampled frenet frame points back into the cartesian coordinate system.
The accumulated arc traversal was precomputed with a 0.05 resolution on the CPU
to make this kernel more suitable for a GPU. This precomputed data could then
be traversed with a binary search on the GPU in runtime. The pre-computation,
along with the binary search, decreased the overall execution time by a factor of
approximately 5.

Figure 3.10 displays the pseudocode of the trajectory sampling kernel. The thread
calculates which trajectory point to sample using its index p_idx, and precomputed
arrays traj_indices, start_indices that are designed for this purpose. The array
traj_indices helps the GPU thread find the trajectory index on which it is supposed
to sample a point. The start_indices includes information about which index the
trajectory to be sampled is located in the flattened trajectory data structure. The
start_indices allows the GPU thread to compute which time t the thread should
sample the trajectory at. When the frenet data has been sampled and stored into
the d_s and d_d arrays, the point is converted back into the cartesian coordinate

24

3. Implementation

system, which is also stored in device memory.

int p_idx = blockIdx.x * blockDim.x + threadIdx.x;
int traj_idx = traj_indices[p_idx];

int start_idx = start_indices[p_idx];

int offset_from_start = p_idx - start_idx;

float t = SAMPLE_STEP * offset_from_start;
QuinticPolynomial sqp = sqgps[traj_idx];
QuinticPolynomial dgp = dqps[traj_idx];

mem->d_s1[p_idx] = at(sqp, t);

mem->d_s2[p_idx] = firstPrime(sqgp, t);
mem->d_s3[p_idx] = secondPrime(sgp, t);
mem->d_s4[p_idx] = thirdPrime(sqgp, t);

mem->d_d1[p_idx] = at(dgp, t);

mem->d_d2[p_idx] = firstPrime(dgp, t);
mem->d_d3[p_idx] = secondPrime(dgp, t);
mem->d_d4[p_idx] = thirdPrime(dgp, t);

auto ref_time = mem->d_csp->findTimeAtLength(mem->d_s1[p_idx]);

tpa::ReferenceData target_ref = {
mem->d_csp->calcX(ref_time),
mem->d_csp->calcY(ref_time),
ref_time,
mem->d_csp->calcOrientation(ref_time),
mem->d_csp->calcCurvature(ref_time),
mem->d_csp->calcCurvatureRate(ref_time),

3

frenetToCartesian(mem, p_idx, &target_ref);

Figure 3.10: Pseudo code of trajectory sampling kernel

Using shared memory in the trajectory sampling kernel is not beneficial, as there is
no data reuse or cooperation between threads. Each thread performs several reads
and writes to global memory, but other threads cannot reuse the data read in the
same block.

3.6 Keeping computation on device

Memory transfers to and from the device can be time-consuming, so reducing the
amount of memory transfers conducted by the program is beneficial. To this end,
the algorithm was modified to eliminate unnecessary memory transfers to and from
the device between the execution of GPU kernels. Ideally, no data should have to be

25

3. Implementation

copied back to the CPU except the lowest cost trajectory. To enable this, the cost
functions were also converted to GPU kernels.

3.6.1 Cost functions

To convert the cost computation into GPU kernels, it was split into two separate
kernels responsible for computation and accumulation. In the cost computation
kernel, each GPU thread computes the cost contribution of one sampled point along
a trajectory. This kernel has the same granularity as the trajectory sampling kernel.
The second kernel is then used to accumulate the costs computed by the first kernel,
one GPU thread per trajectory. The granularity of the second kernel is suboptimal
for GPU execution. Still, this strategy eliminates the need to copy all trajectory data
back to the host to perform the computation there, which would result in significant
memory transfer execution times. Furthermore, the execution time of the second
kernel is so insignificant that the granularity does not matter.

The first kernel functions by each thread atomically adding the jerk cost to a cost
array with one element for each trajectory. The atomic operation is critical since
all the threads operating on the same trajectory must add their computed cost to
the total trajectory cost. The same is true for curvature violations, but an atomic
OR operation is performed instead as it is a boolean value. The second kernel reads
these values for each trajectory to compute the final cost.

The addition of these two cost kernels allowed the entire algorithm, from trajectory
sampling to finding the winning trajectory, to be executed on the GPU without
transferring memory to and from the host in the intermediate steps. Only the cost
array is copied back to the host to find the winning trajectory, where the minimum
cost and its corresponding trajectory index are found. That index is then used to copy
back the data of the winning trajectory to the host, which would then be executed
by the car in a real scenario. Only copying back the cost and the winning trajectory
resulted in another significant reduction of execution time, as device-to-host data
transfer was a substantial portion of the execution time.

The kernel call procedure of the algorithm is shown in Figure 3.11. First, the
trajectory sampling kernel is called with a preconfigured block size. The grid size
is calculated from the block size so that all points for each trajectory are sampled.
After the sampling kernel is called, cudaDeviceSynchronize is called to ensure that
all trajectories have finished sampling before evaluating the trajectories. The same
is true after the totalCostFineGrained kernel call, and each cost calculation needs
to be completed before accumulating the values. Note that each kernel call includes
mem.stream. The synchronisation is necessary because each memory transfer is
streamed to enable data-computation overlapping to reduce execution time further.
After the collision checking kernel, a call to cudaStreamSynchronize is performed,
ensuring that each memory transaction using the stream is finished before transferring
memory back to the host.

26

3. Implementation

constexpr auto traj_sampl_block_size {TRAJ_SAMPLING_BLOCK_SIZE};
const auto traj_sampl_grid_size =

{((coords_len) + traj_sampl_block_size - 1) / traj_sampl_block_size};
trajectorySampling<<<traj_sampl_grid_size,

traj_sampl_block_size,

o,

mem.stream>>>(d_mem, d_dqps, d_sqgps, d_target_times);
cudaDeviceSynchronize();

constexpr auto total_cost_block_size {TOTAL_COST_BLOCK_SIZE};

const auto total_cost_grid_size =

{((coords_len) + total_cost_block_size - 1) / total_cost_block_size};
totalCostFineGrained<<<total_cost_grid_size,

total_cost_block_size,

o,

mem. stream>>>(d_mem, d_target_times);

cudaDeviceSynchronize();

const auto accumulate_block_size {trajectory_count};

constexpr auto accumulate_grid_size {13};
accumulateCosts<<<accumulate_grid_size,

accumulate_block_size,

o,

mem.stream>>>(d_mem, d_d_targets, d_s_targets, d_target_times);

constexpr auto coll_check_block_size {COLLISION_CHECK_BLOCK_SIZE};

const auto coll_check_grid_size

{(mem. thread_count + coll_check_block_size - 1) / coll_check_block_size};
collisionCheck<<<coll_check_grid_size,

coll_check_block_size,

9,

mem. stream>>>(d_mem) ;

cudaStreamSynchronize(mem.stream);

Figure 3.11: Kernel calls in the GPU implementation of the algorithm.

The final GPU-accelerated version achieved execution times shown in Table 3.5 with
the discretisation parameters shown in Table 3.1. The proportions are visualised as
a pie chart in Figure 3.12.

Table 3.5: Execution time total and per region for GPU implementation. Bench-
marking parameters shown in 3.1

Region | Median execution time (ys)
Total 2613.24
Collision check 1324.94

Trajectory generation | 998.48

27

3. Implementation

Median execution time of regions (Total 2613.24 ps)

Other
11.1%

Collision check
50.7%

Trajectary generation
38.2%

Figure 3.12: Median execution time of GPU implementation regions with bench-
marking parameters listed in 3.1

28

4

Experimental Setup

To efficiently evaluate the effects of parallelism on the algorithm, a well-defined
experimental setup must be described in terms of tools and methodologies used to
benchmark it. Benchmarking requires unbiased comparisons and accurate measure-
ments with minimal outside influence. During development, proper benchmarking is
also important to identify bottlenecks and compare optimisations.

4.1 Perf profiling

Perf is a profiling tool included in the Linux kernel that can provide detailed
information about performance metrics. When profiling application performance,
Perf can provide valuable information about program bottlenecks. Furthermore, it
can give execution time statistics on a per-function basis. Combined with tools like
FlameGraph [10], the program stack trace can be visualised (see example in 4.1). The
FlameGraph is a compelling visualisation that simplifies bottleneck identification.
For example, in Figure 4.1, it is easily identified that the bottleneck of the program is
the generateTrajectories function, highlighting that effort should be spent optimising
this function.

|
| | I
[| [
0Bl _gRLGK. . void std:. Bool_gnuoxx_. sid. void st
__gnu_cxx:;_normal_iterator<float const*, std::.. ‘] .|J __gnu_cxxi:_normal iterator<float const* std:ivector<.. | 1 | @1
Cubicspline1D::searchindex |EEE <. CubicSpline1D::searchindex =-
-\ CubicSpline1D::at CubicSpline1D::at

1 Cubicspline2D::caleX

coll..

A H
_

que ntial_tpa_

Figure 4.1: Perf stack trace data modelled using a flame graph.

29

4. FExperimental Setup

4.2 CH+ Chrono library

To measure the execution time of portions of programs, it can be helpful to have
programming directives available that can record timestamps at specific lines of
code. In C++, the chrono library provides several clocks that offer this functionality.
Among these, the high-resolution clock provides the system’s highest tick resolution.
By recording timestamps before and after a code segment and then calculating the
duration between the two timestamps, a high-resolution execution time measurement
can be retrieved. An example of this is illustrated in 4.2, where the function call to
tpa::run is timed using start and stop timestamps, which are then used to calculate
and print the function call duration to the standard out stream.

auto start = std::chrono::high_resolution_clock: :now();
tpa::run(current.ego, current.ref, current.csp, current.obstacles);
auto stop = std::chrono::high_resolution_clock: :now();

auto duration =
std::chrono: :duration_cast<std::chrono::microseconds>(stop-start);
std::cout << duration.count() << std::endl;

Figure 4.2: C++ chrono library high-resolution clock usage example.

4.3 PAPI

The Performance Application Programming Interface (PAPI) [11] is a tool created
by the University of Tennessee that allows developers to benchmark and evaluate
application performance through an API. PAPI provides information about hard-
ware performance counters and software-defined events. PAPI can also retrieve
performance in user-defined segments, allowing for detailed performance statistics
of microkernels. The metrics retrieved range from CPU performance counters to
instruction count, cycle count, cache misses, and accesses. Still, it can also provide
information from other components such as GPUs and interconnects [11].

To mark a section to be benchmarked through the high-level API, a region is defined
as illustrated in 4.3. The events to be recorded in the defined regions are set through
the PAPI _EVENTS environment variable. There are several events to choose from,
depending on the current architecture.

PAPI_hl_region_begin("tpa_run”);
tpa::run(current.ego, current.ref, current.csp, current.obstacles);
PAPI_hl_region_end("tpa_run");

Figure 4.3: Example of a PAPI high-level region definition.

When executing the compiled binary, the data collected by PAPI in these regions
are exported to a JSON file where the performance counters for each execution of a

30

4. FExperimental Setup

region can be analysed. PAPI also gathers information about regions executed on
several threads and presents per-thread information in these situations [11].

4.4 NVIDIA Nsight

NVIDIA Nsight [12] is a toolset used for detailed system-wide performance analysis
and visualise system utilisation. More specifically, NVIDIA Nsight offers pointers
to locate bottlenecks and optimise and benchmark the GPU-accelerated implemen-
tation of the algorithm. NVIDIA Nsight can be leveraged to ensure an effective
parallelisation and utilisation of the targeted GPU [12]. The statistics retrieved from
the GPU can also be used to compare resource efficiency with CPU versions.

31

4. FExperimental Setup

32

O

Results

This chapter comprehensively analyses the thesis results regarding execution time,
trajectory quality, and performance. In short, the GPU-accelerated version is
significantly faster than the sequential and multicore versions and provides lower-cost
trajectories in a fraction of the execution time. This chapter also provides insights
into the real-time characteristics of the algorithm implementations by analysing the
standard deviations of the execution times. Finally, the GPU implementation is
analysed on the kernel level to determine bottlenecks and opportunities for further
optimisation.

As described in Chapter 4, the results presented in this section are gathered from
a benchmarking process where each version of the algorithm (GPU-accelerated,
multicore and sequential) are executed with varying trajectory, obstacle and obstacle
trajectory counts. Each parameter combination is executed 50 times, each time with
a different seed. Averages are then calculated for that specific parameter combination,
including execution time, lowest cost and execution time standard deviation. All
benchmarks are executed on a GPU-accelerated automotive computing platform.

5.1 Execution time

When analysing the execution times presented in Table 5.1 and in Figure 5.1, it is
clear that the GPU-accelerated version of the algorithm is significantly faster than
the sequential and multicore version, providing 2 to 3 orders of magnitude lower
execution times. Furthermore, the slowest GPU-accelerated execution time shown in
Table 5.2 is faster than all sequential and multicore execution times.

The execution time of the GPU-accelerated version seems to approach linear scaling
between 108 and 252 trajectories, as highlighted by the slight curve seen in Figure
5.1. The scaling could be because low trajectory counts do not efficiently utilise the
parallelism resources that the GPU provides, thus leaving GPU processing units
underutilised. Said scaling becomes apparent when comparing the throughput and
occupancy statistics presented in Tables 5.5 and 5.6 where the lower trajectory
count results in an efficient use of hardware resources. The underutilisation of
GPU resources for low trajectory counts would also explain the logarithmic scaling
of trajectory throughput as shown in Figure 5.2. Despite this, the algorithm’s
GPU-accelerated version far outperforms both versions for low trajectory counts.

33

5. Results

Average execution time vs Trajectory count

® Accelerated & Multicore Sequential

10000000
1000000
100000 "
10000 ®

1000
50 100 500 1000

Figure 5.1: Average execution times of all algorithm versions vs the amount of
trajectories generated.

Trajectories | Sequential (ps) Multicore (ps) GPU-accelerated (ps) Speedup
36 686280 72267.38 1667.9 411.46
108 2078833.72 210305.86 2397.58 867.05
252 4890171.1 458418.82 4080.68 1198.37
468 9072687.16 857955.94 6538.24 1387.63
828 16024921.46 1454538 10581.22 1514.47

Table 5.1: Execution times in microseconds of the different versions of the algorithm.
The speedup column shows the speedup of the GPU-accelerated version compared
to the sequential version.

Trajectories | GPU-accelerated (ps)
36 1667.9

108 2397.58

252 4080.68

468 6538.24

828 10581.22

1104 13687.66

1656 19867.3

2208 25943.6

Table 5.2: Execution times in microseconds for the GPU-accelerated version of the
algorithm.

34

5. Results

Trajectory throughput vs Trajectories generated
8 obstacles, 2 obstacle trajectories

0.100 —

1104 1656 2208
168 ° .

0.075 -

108
0.050

36
0.025 ®

Trajectory throughput (trajectaries/ys)

0.000
500 1000 1500 2000

Trajectories generated

Figure 5.2: Graph of the throughput for differing amounts of trajectories generated

Introducing more obstacles to the scene seems to linearly increase the execution time
of all versions of the algorithm as seen in Figures 5.3, 5.4 and 5.5. Furthermore,
increasing the number of obstacle trajectories seems to result in a steeper linear
scaling of the execution time.

Average execution time vs Obstacle count
For each obstacle trajectory count, 1104 trajectories
@1 A2 3
80000

60000

40000

Execution time (us)

20000

>
L]

10 20 30 40 50 60 70

Obstacle count

Figure 5.3: Graph of average execution time for different amounts of obstacles and
obstacle paths

35

5. Results

Average execution time vs Obstacle count
®1 A2 3
6000000

4000000

2000000

Average execution time (us)

5 10 15 20 25 30

Obstacle count

Figure 5.4: Average execution time in microseconds vs obstacle count for the multicore
version of the algorithm.

Average execution time vs Obstacle count

®1 A2 3
1.5E+7 —

@
=
w
E 0BT
= F Y
S
5
(&)
18]
T 50E+6
) : A []
{=]
8 1
g 4 *
z Te
0
2 4 8 B

Obstacle count

Figure 5.5: Average execution time in microseconds vs the number of obstacles for
the sequential version of the algorithm.

The standard deviation of the GPU-accelerated version of the algorithm shown in
Figure 5.6 proves some jitter in the execution time, especially for lower trajectory
counts. The jitter may be because OS housekeeping effects disproportionately impact
lower execution times than longer ones. Interestingly, the standard deviation of the
execution time seems to be significantly greater for the sequential and multicore
versions, as highlighted by Figures 5.8 and 5.7. Furthermore, it seems to scale
linearly with the number of trajectories generated to a greater extent than the
GPU-accelerated version. It could be the case that the GPU-accelerated version of

36

5. Results

the algorithm suffers less from OS housekeeping interrupts as the computation is
offloaded to the GPU, allowing the CPU to perform OS housekeeping tasks without
interfering with the algorithm execution. The decreased deviation further showcases
the applicability of GPUs to accelerate this algorithm in real-time scenarios.

Execution time standard deviation vs Trajectory count
obstacle trajectories

® 16 obstacles A 32 obstacles 64 obstacles
1000
750

500

250

Standard deviation (ps)

500 1000 1500 2000

Trajectory count

Figure 5.6: Graph of the standard deviation of average execution time vs trajectories
generated.

Execution time standard deviation vs Trajectory count
For different obstacle counts, 3 obstacle trajectories

L] A6 32

30000
oo

20000

=
=

10000

o
=]

Execution time standard deviation {us)

)

200 400 600 800
Trajectory count

Figure 5.7: Average execution time in microseconds vs obstacle count for the multicore
version of the algorithm.

37

5. Results

Execution time standard deviation vs Trajectory count

® 2 obstacle A 4 opbstacle 8 ohstacle

1.00E+7 ——
T50E+6 —
5.00E+6 —+—

250E+6 —— &

A .

200 400 600 a00

Execution time standard deviation (us)

Trajectory count

Figure 5.8: Standard deviation of the execution time in microseconds vs the number
of trajectories generated for the sequential version of the algorithm. The graph shows
three series for three different obstacle counts.

5.2 Trajectory quality

In the case of the GPU-accelerated algorithm, the trajectory quality gained from
generating more trajectories within the solution space resulted in a notable decrease
in the minimum cost as highlighted in Table 5.4. However, the cost stabilised fast,
and in the case of the GPU-accelerated execution shown in Table 5.3, it did not
decrease at all past 828 trajectories generated. The stabilised cost marks diminishing
returns regarding trajectory quality, but it should be noted that this will depend on
how the discretisation of the solution space is performed.

Trajectories | Cost normalized
36 1

108 0.2916461341
252 0.2889586996
468 0.2887225024
828 0.2876996609
1104 0.2876996609
1656 0.2876996609
2208 0.2876996609

Table 5.3: Normalised cost for the GPU-accelerated version of the algorithm for
different trajectory counts. Eight Obstacles and two trajectories per obstacle were
used in these benchmarks.

The multicore and sequential versions of the algorithm behave similarly when
analysing the normalised costs presented in Table 5.4. However, the execution
time required to obtain these costs is significantly longer.

38

5. Results

Trajectories | GPU-accelerated cost Multicore cost Sequential cost
36 1 1 1

108 0.2916461341 0.3727121464 0.3727121464
252 0.2889586996 0.309484193 0.309484193
468 0.2887225024 0.2995008319 0.2995008319
828 0.2876996609 0.2945091514 0.2945091514

Table 5.4: Normalised cost of the different algorithm versions for different trajectory
counts. Eight obstacles and two trajectories per obstacle were used in these bench-
marks.

The same relationship as in 5.3 can be seen for all versions of the algorithm as
displayed in 5.4. However, the data must be normalised to account for differences
in trajectory length since the GPU-accelerated version dynamically computes the
trajectory resolution to have the same number of points per trajectory. Sequential
and multicore do not have this feature, and the number of points per trajectory is
proportional to the target time. This feature also explains the difference in cost
values between the versions. The feature was briefly ported back to the multicore
and sequential versions, but resulted in worse performance which is why it was only
kept in the GPU-accelerated implementation.

5.3 Kernel performance

Table 5.5 highlights that none of the kernels achieves very high memory throughput,
and only the two heavy kernels responsible for sampling the trajectories and checking
for collisions achieve high computational throughput. The low memory throughput
implies optimisation opportunities in kernel memory accesses and how computation
is performed on that memory.

The fine-grained cost computation kernel and the cost accumulation kernel are very
lightweight and do not occupy the GPU for any significant period of time. There-
fore, less effort was spent optimising them to avoid diminishing returns. However,
alternative cost computation strategies may allow for further cuts in execution time
and potentially allow for the two kernels to be merged into one.

Metric collisionCheck trajSampling totalCostFG accumCosts
Execution time (ms) 5.41 2.39 0.73 0.01

Comp. throughput (%) | 65.89 84.25 6.33 0.64

Mem. throughput (%) | 40.81 21.05 17.21 5.71

SM occupancy (%) 98.55 63.20 89.46 15.01

Table 5.5: Nvidia Nsight Compute statistics for each kernel in the GPU-accelerated
version of the algorithm. The binary benchmark generates 1104 trajectories with
eight obstacles and two obstacle trajectories.

39

5. Results

Metric collisionCheck trajSampling totalCostFG accumCosts
Execution time (ms) 0.218 0.109 0.046 0.0087
Comp. throughput (%) | 54.16 62.81 2.93 0.16

Mem. throughput (%) | 33.55 16.68 9.34 0.5

SM occupancy (%) 86.87 54.76 54.53 8.74

Table 5.6: Nvidia Nsight Compute statistics for each kernel in the GPU-accelerated
version of the algorithm. The binary benchmark generates 36 trajectories with eight
obstacles and two obstacle trajectories.

Table 5.5 and 5.6 presents execution time, compute and memory throughput and
achieved SM occupancy of each kernel. The execution time differs from the actual
execution time as it is affected by being executed in a benchmarking context. The
tables indicate that a lower trajectory count significantly reduces the computational
throughput, memory throughput and achieved occupancy.

Extended information about Nsight Compute statistics for the trajectory sampling
and collision checking kernels can be seen in Figures 5.9 and 5.10. The graphs show
that resources seem unsaturated for low trajectory counts, as previously stated, and
quickly stabilise and remain virtually unchanged for increasing trajectory counts.
Note that for the trajectory sampling kernel, the achieved occupancy stabilises at
about 66% occupancy. The occupancy is close to the theoretical maximum occupancy
of this kernel that Nvidia Nsight Compute reports at 66.7% (2/3). This theoretical
maximum is caused by the kernel requiring 50 registers per thread, limiting the
number of warps that can run in parallel compared to the hardware maximum.
Restructuring this kernel that requires fewer registers could result in significant
speedups.

Trajectory sampling kernel metrics vs Trajectory count

® cCompute throughput A& Memaory throughput SM occupancy
100 -
959 468 828 1104 1656 2208
08 4 o P . ® ®
2 753 ®
& ®
i
o 50
2
L
(=
=
= 25 . y
i ™ 'y F Y
0
500 1000 1500 2000
Trajen:tories

Figure 5.9: Nvidia Nsight Compute statistics for the trajectory sampling kernel vs
trajectory counts. Benchmarked with eight obstacles and two obstacle trajectories.

40

5. Results

Kernel metrics vs Trajectory count

® Compute throughput & Memary throughput SM occupancy

100
® 75 g 252 468 828 1104 1656 2208
= g @ ® [] ° ™ °
=
S a0 ®
[
E e F F Y & & A
o A
=
= 25
L
=

0

500 1000 1500 2000

Trajectaries

Figure 5.10: Nvidia Nsight Compute statistics for the collision checking kernel vs
trajectory counts. Benchmarked with eight obstacles and two obstacle trajectories.

41

5. Results

42

O

Future work

Future work within this field could include investigating further optimization strate-
gies using CUDA techniques such as shared memory. The kernels written for this
project did not allow for practical usage of this as explained in Sections 3.5.3 and
3.5.2. Nevertheless, other implementations of similar algorithms could find cases
where techniques such as shared memory would be easily applicable.

An alternative cost computation strategy could also be considered as the cost
computation GPU-kernels in this implementation are unoptimized and inefficient.
Significant effort was not spent on optimizing these because of their already very
low execution times in proportion to the other kernels. Reduction-based approaches
like tree-based reduction of the costs per trajectory could be explored, which could
improve performance.

Furthermore, it would also be interesting to investigate the power consumption of
the different implementations of algorithms. Excessive power consumption should be
avoided since they are executed on mobile platforms, and their only power supply is
onboard batteries. The ability to dissipate the heat generated by the device must also
be considered, as heavy computation and power consumption cause heat generation.
For this reason, it might also be interesting to develop an energy-efficient version of
the algorithm where resources are utilised to minimise power consumption while still
meeting some performance requirements.

Another research opportunity would be to investigate the performance impact of
using cross-platform libraries for GPU-acceleration, like OpenCL or SYCL, instead
of CUDA. This would eliminate dependency on specific hardware and make the
code portable to different platforms. It would also be meaningful to conduct a
more rigid real-time analysis of GPU-accelerated algorithms within this field, mainly
to investigate how GPU-acceleration affects execution time jitter in time-critical
settings.

43

6. Future work

44

-

Conclusion

In this thesis, the trajectory generation algorithm described by Werling et al. [1] was
implemented in three versions: sequential, multicore and GPU-accelerated. Initially,
each version was verified for correctness using a seeded mock state generation frame-
work, and a visualisation tool was developed alongside the algorithm implementation.
The three versions were iteratively optimised while simultaneously verifying results
through the tools mentioned earlier.

The algorithm versions were then benchmarked with varying trajectory count, obstacle
count and obstacle trajectory count. The results highlighted that the GPU-accelerated
version of the algorithm was 2 to 3 orders of magnitude faster than the sequential
version. The multicore version also produced significant speedups of around one order
of magnitude. Furthermore, the GPU-accelerated version proved to have a lower
execution time standard deviation, indicating that is has a more stable execution
time, which is more suitable for real-time scenarios. However, this is very dependent
on the OS being used and should be researched further in a more rigid real-time
analysis.

Furthermore, the lower execution time of the GPU-accelerated version allowed for
higher resolution discretisation of the solution space, producing more trajectories to
choose from, resulting in a lower minimal cost. However, the minimal cost ceased
to improve after 828 trajectories, highlighting a point of diminishing returns. The
diminishing returns could be attributed to how the solution space was discretised
and may be significantly impacted by other discretisation strategies.

Performance analysis of the GPU-accelerated program kernels show that there is
room for further optimization. The trajectory sampling and collision checking kernels
seem to achieve reasonably high compute throughput, but neither seem to achieve
high memory throughput. To improve this, the memory access patterns of the
GPU-kernels should me analysed in more detail to find and address inefficiencies.
Alternative implementation strategies of the GPU-kernels could also be investigated
to achieve better performance, avoiding small computationally lightweight kernels.

Future research could investigate more advanced CUDA optimisation strategies,
or different algorithm implementation approaches to increase performance further.
Furthermore, the power consumption of the other algorithms could be studied since
these algorithms often execute battery-powered automotive hardware, which could
constrain how much power can be consumed for heat dissipation. Lastly, it would be

45

7. Conclusion

valuable to investigate the real-time attributes of the algorithm implementations in
more detail since they often execute in time-critical scenarios where execution time
jitter is of utmost importance.

46

[10]
[11]

[12]

Bibliography

M. Werling, S. Kammel, J. Ziegler, and L. Gr6 11, “Optimal trajectories for time-
critical street scenarios using discretized terminal manifolds,” The International
Journal of Robotics Research, vol. 31, no. 3, pp. 346-359, 2012.

K. Bergman, O. Ljungqvist, and D. Axehill, “Improved optimization of motion
primitives for motion planning in state lattices,” in 2019 IEEFE intelligent
vehicles symposium (1V), IEEE, 2019, pp. 2307-2314.

M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion planning for
autonomous driving with a conformal spatiotemporal lattice,” in 2011 IEEE
International Conference on Robotics and Automation, IEEE, 2011, pp. 4889—
4895.

N. Seegmiller, P. Barone, and E. Venator, Motion planning in curvilinear
coordinates for autonomous vehicles, US Patent 11,884,268, Jan. 2024.

T. Rauber and G. Riinger, Parallel programming. Springer, 2013.

D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Processors:
A Hands-on Approach, 1st. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2010, 1sBN: 0123814723.

R. Strzodka, “Chapter 31 - abstraction for aos and soa layout in c++,” in
GPU Computing Gems Jade Edition, ser. Applications of GPU Computing
Series, W.-m. W. Hwu, Ed., Boston: Morgan Kaufmann, 2012, pp. 429-441,
ISBN: 978-0-12-385963-1. DOI: https://doi.org/10.1016/B978-0-12-385963-
1.00031-9. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780123859631000319.

Intel Corporation, “A guide to vectorization with intel c++ compilers,” Intel
Corporation, Tech. Rep., 2010. [Online]. Available: http://software.intel.
com/file/31848.

NVIDIA Corporation, Cuda c++ programming guide, Accessed: March 20,
2025, NVIDIA Corporation, 2025. [Online|. Available: https://docs.nvidia.
com/cuda/cuda-c-programming-guide/.

B. Gregg. “Flame graphs.” Accessed: February 20, 2025. [Online|. Available:
https://www.brendangregg.com/flamegraphs.html.

ICL UTK, Papi wiki, https://github.com/icl-utk-edu/papi/wiki,
Accessed: 2025-03-12, 2025.

NVIDIA. “Nvidia nsight systems user guide.” Accessed: 2025-02-25, NVIDIA
Corporation. [Online]. Available: https: / /docs . nvidia . com/ nsight -
systems/UserGuide/index.html.

47

https://doi.org/https://doi.org/10.1016/B978-0-12-385963-1.00031-9
https://doi.org/https://doi.org/10.1016/B978-0-12-385963-1.00031-9
https://www.sciencedirect.com/science/article/pii/B9780123859631000319
https://www.sciencedirect.com/science/article/pii/B9780123859631000319
http://software.intel.com/file/31848
http://software.intel.com/file/31848
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.brendangregg.com/flamegraphs.html
https://github.com/icl-utk-edu/papi/wiki
https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://docs.nvidia.com/nsight-systems/UserGuide/index.html

Bibliography

48

A

Appendix 1

This appendix includes the trajectory generation pseudocode.

A. Appendix 1

for (lon_strategy : lon_strategies) {
for (lat_strategy : lat_strategies) {
frenet = cartesianToFrenet(ego_data, ref_data)
target_times = getTargetTimes(frenet, lon_strat)

for (t : target_times) {
target_s = getTargetState(frenet, t, lon_strat)
target_d = getTargetState(frenet, t, lat_strat)

for (d = d_min; d <= d_max; d += d_step) {
target_d_copy = target_d;
target_d_copy.pos += d;
dgp = QuinticPolynomial(frenet.lat, target_d_copy, t)
for (s = s_min; s <= s_max; s += s_step) {
target_s_copy = target_s
if (lon_strategy == Strategy::VEL_KEEP) {
target_s_copy.vel += s
sgp = QuarticPolynomial(frenet.lon, target_s_copy, t)
} else {
target_s_copy.pos += s
sgp = QuinticPolynomial(frenet.lon, target_s_copy, t)

FrenetTrajectory fren_traj
CartesianTrajectort cart_traj
for (s = 0; s < t; s += sample_step) {
// Evaluate trajectories
// Convert to cartesian coordinates
// Save both frenet and cartesian coordinates
}
cost = calculateCost(fren_traj, cart_traj);
trajectories.push_back({fren_traj, cart_traj, cost});

Figure A.1: Trajectory generation pseudocode.

IT

	List of Figures
	List of Tables
	Introduction
	Problem statement
	Research goals

	Background
	Trajectory planning algorithm
	Frenet frame
	Trajectory generation
	Cost function
	Object collision and curvature checking

	Parallel architectures & optimisation strategies
	GPU architecture
	Grid, block & warp
	CUDA
	Streaming Multiprocessors

	CPU multicore architecture
	OpenMP

	Memory locality
	Memory access patterns & Data layout

	Implementation
	Verification
	Deterministic property-based testing
	Manual visualisation

	Sequential implementation
	Initial state generation
	Trajectory generation
	Collision detection and curvature checking

	Parallelisation analysis
	Collision detection
	Trajectory generation

	Multicore implementation
	Collision checking
	Trajectory generation

	GPU-accelerated implementation
	CUDA-compatibility refactor
	Collision check GPU implementation
	Trajectory generation

	Keeping computation on device
	Cost functions

	Experimental Setup
	Perf profiling
	C++ Chrono library
	PAPI
	NVIDIA Nsight

	Results
	Execution time
	Trajectory quality
	Kernel performance

	Future work
	Conclusion
	Bibliography
	Appendix 1

